A339911 Numbers k > 1 for which bigomega(k) <= bigomega(k-1)/2, where bigomega gives the number of prime factors, counted with multiplicity.
5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 33, 37, 41, 43, 47, 49, 53, 55, 57, 59, 61, 65, 67, 71, 73, 79, 82, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 129, 131, 133, 137, 139, 141, 145, 149, 151, 157, 161, 163, 167, 169, 173, 177, 179, 181, 185, 191, 193, 197, 199, 201, 205, 209, 211, 217, 221, 223, 226, 227
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..17515; all terms <= 65537
Programs
-
Mathematica
Select[Range[3, 227, 2], PrimeOmega[#] <= PrimeOmega[# - 1]/2 &] (* Michael De Vlieger, Dec 22 2020 *)
-
PARI
isA339911(n) = ((n>1)&&((2*bigomega(n))<=bigomega(n-1)));