A339912 Numbers k > 1 for which bigomega(k) < bigomega(k-1)/2, where bigomega gives the number of prime factors, counted with multiplicity.
13, 17, 19, 29, 31, 33, 37, 41, 43, 49, 53, 61, 65, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 121, 127, 129, 131, 137, 139, 145, 149, 151, 157, 161, 163, 169, 173, 177, 181, 191, 193, 197, 199, 201, 209, 211, 217, 223, 229, 233, 239, 241, 251, 253, 257, 265, 269, 271, 277, 281, 283, 289, 293, 301, 305, 307, 311, 313
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12313; all terms <= 65537
Programs
-
Mathematica
Select[Range[3, 313, 2], PrimeOmega[#] < PrimeOmega[# - 1]/2 &] (* Michael De Vlieger, Dec 22 2020 *) Flatten[Position[Partition[PrimeOmega[Range[400]],2,1],?(#[[2]]<#[[1]]/2&),1,Heads->False]]+1 (* _Harvey P. Dale, Jan 11 2024 *)
-
PARI
isA339912(n) = ((n>1)&&((2*bigomega(n))