A339916 The sum of 2^((d-1)/2) over all divisors of 2n+1.
1, 3, 5, 9, 19, 33, 65, 135, 257, 513, 1035, 2049, 4101, 8211, 16385, 32769, 65571, 131085, 262145, 524355, 1048577, 2097153, 4194455, 8388609, 16777225, 33554691, 67108865, 134217765, 268435971, 536870913, 1073741825, 2147484699, 4294967365, 8589934593, 17179871235, 34359738369, 68719476737
Offset: 0
Keywords
Examples
For n=7, a(7)=2^7+2^2+2^1+2^0=135 because the divisors of 15 are 15,5,3,1.
Links
- Robert Israel, Table of n, a(n) for n = 0..3318
Programs
-
Maple
seq(add(2^((d-1)/2),d=numtheory:-divisors(2*n+1)),n=0..100); # Robert Israel, Dec 24 2020
-
Mathematica
A339916[n_]:=Block[{d=Divisors[2n+1]},Sum[2^((d[[k]]-1)/2),{k,Length[d]}]];Array[A339916,50,0]
-
PARI
a(n) = sumdiv(2*n+1, d, 2^((d-1)/2)); \\ Michel Marcus, Dec 23 2020
-
Python
from sympy import divisors def a(n): return sum(2**((d-1)//2) for d in divisors(2*n+1)) print([a(n) for n in range(37)]) # Michael S. Branicky, Dec 24 2020
Comments