cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339916 The sum of 2^((d-1)/2) over all divisors of 2n+1.

Original entry on oeis.org

1, 3, 5, 9, 19, 33, 65, 135, 257, 513, 1035, 2049, 4101, 8211, 16385, 32769, 65571, 131085, 262145, 524355, 1048577, 2097153, 4194455, 8388609, 16777225, 33554691, 67108865, 134217765, 268435971, 536870913, 1073741825, 2147484699, 4294967365, 8589934593, 17179871235, 34359738369, 68719476737
Offset: 0

Views

Author

Don Knuth, Dec 22 2020

Keywords

Comments

This is sort of a bitmap representation of the divisors of odd numbers.

Examples

			For n=7, a(7)=2^7+2^2+2^1+2^0=135 because the divisors of 15 are 15,5,3,1.
		

Crossrefs

Cf. A114001 (bit reversal), A034729, A055895.

Programs

  • Maple
    seq(add(2^((d-1)/2),d=numtheory:-divisors(2*n+1)),n=0..100); # Robert Israel, Dec 24 2020
  • Mathematica
    A339916[n_]:=Block[{d=Divisors[2n+1]},Sum[2^((d[[k]]-1)/2),{k,Length[d]}]];Array[A339916,50,0]
  • PARI
    a(n) = sumdiv(2*n+1, d, 2^((d-1)/2)); \\ Michel Marcus, Dec 23 2020
    
  • Python
    from sympy import divisors
    def a(n): return sum(2**((d-1)//2) for d in divisors(2*n+1))
    print([a(n) for n in range(37)]) # Michael S. Branicky, Dec 24 2020