A339927 Number of partitions of n into two composite parts with the same number of divisors.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 3, 3, 1, 4, 1, 2, 2, 4, 2, 1, 1, 4, 4, 3, 3, 4, 2, 2, 3, 7, 4, 3, 0, 4, 4, 5, 2, 5, 3, 1, 3, 7, 6, 3, 3, 6, 6, 5, 3, 6, 2, 6, 3, 11, 7, 2, 3, 4, 6, 5, 5, 8, 3, 4, 5, 10, 4, 4, 3, 7, 5, 7, 7, 7
Offset: 1
Keywords
Examples
a(18) = 2; 18 has two partitions into two composite parts that have the same number of divisors, (10,8) and (9,9).
Programs
-
Mathematica
Table[Sum[KroneckerDelta[DivisorSigma[0, i], DivisorSigma[0, n - i]] (1 - PrimePi[i] + PrimePi[i - 1]) (1 - PrimePi[n - i] + PrimePi[n - i - 1]), {i, 2, Floor[n/2]}], {n, 100}] Table[Count[IntegerPartitions[n,{2}],?(AllTrue[#,CompositeQ]&&Length[Union[ DivisorSigma[ 0,#]]]==1&)],{n,100}] (* _Harvey P. Dale, Jul 02 2022 *)