cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364255 a(n) = gcd(n, A163511(n)).

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 3, 2, 1, 24, 5, 2, 1, 4, 1, 2, 1, 32, 3, 2, 5, 36, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 48, 1, 10, 1, 4, 1, 2, 11, 8, 3, 2, 1, 4, 1, 2, 1, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 5, 4, 7, 2, 1, 16, 27, 2, 1, 12, 5, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 96, 1, 2, 1, 20, 1, 2, 1, 8, 105
Offset: 0

Views

Author

Antti Karttunen, Jul 16 2023

Keywords

Crossrefs

Cf. A163511, A364257 (Dirichlet inverse), A364258, A364491, A364492, A364493.

Programs

  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n)); \\ Antti Karttunen, Sep 01 2023
  • Python
    from math import gcd
    from sympy import nextprime
    def A364255(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return gcd(c*p,n) # Chai Wah Wu, Jul 25 2023
    

Formula

From Antti Karttunen, Sep 01 2023: (Start)
a(n) = gcd(n, A364258(n)) = gcd(A163511(n), A364258(n)).
a(n) = n / A364491(n) = A163511(n)/ A364492(n).
(End)

A364500 a(n) = gcd(n, A005940(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 1, 10, 1, 12, 1, 2, 3, 16, 1, 2, 1, 20, 7, 2, 1, 24, 1, 2, 3, 4, 1, 6, 1, 32, 1, 2, 1, 4, 1, 2, 3, 40, 1, 14, 1, 4, 5, 2, 1, 48, 1, 2, 3, 4, 1, 6, 5, 8, 1, 2, 1, 12, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 15, 4, 11, 6, 1, 80, 1, 2, 1, 28, 5, 2, 3, 8, 1, 10, 7, 4, 1, 2, 5, 96, 1, 2, 33, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 100; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[GCD[a[#], #] &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364500(n) = gcd(n, A005940(n));
    
  • PARI
    A364500(n) = { my(orgn=n,p=2,rl=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), rl++; if(1==(n%4), z *= p^min(rl,valuation(orgn,p)); rl=0)); n>>=1); (z); };

Formula

a(n) = gcd(n, A364499(n)) = gcd(A005940(n), A364499(n)).
a(n) = n / A364501(n) = A005940(n) / A364502(n).

A340364 a(n) = gcd(A005940(n), A324106(n)), where A324106(n) is multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 3, 16, 11, 14, 21, 20, 1, 30, 45, 24, 49, 50, 75, 36, 125, 6, 81, 32, 1, 22, 3, 28, 55, 42, 3, 40, 77, 2, 105, 60, 35, 90, 135, 48, 121, 98, 3, 100, 245, 150, 75, 72, 7, 250, 375, 12, 625, 162, 9, 64, 1, 2, 39, 44, 5, 6, 99, 56, 91, 110, 3, 84, 5, 6, 189, 80, 143, 154, 231
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2021

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A005940(n), A324106(n)) = gcd(A005940(n), A340362(n)).
Showing 1-3 of 3 results.