cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340004 Decimal expansion of Product_{primes p == 1 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 1, 0, 9, 1, 5, 1, 6, 0, 6, 0, 1, 0, 1, 9, 5, 2, 2, 6, 0, 4, 9, 5, 6, 5, 8, 4, 2, 8, 9, 5, 1, 4, 9, 2, 0, 9, 8, 4, 5, 3, 8, 6, 2, 7, 5, 8, 1, 7, 3, 8, 5, 2, 3, 7, 3, 2, 0, 2, 4, 2, 0, 0, 8, 9, 2, 5, 1, 6, 1, 3, 7, 4, 2, 4, 5, 6, 7, 2, 6, 3, 7, 0, 9, 3, 9, 6, 1, 9, 7, 6, 9, 4, 5, 5, 8, 9, 2, 1, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Comments

This constant is called Euler product 2==1 modulo 5 (see Mathar's Definition 5 formula (38)) or equivalently zeta 2==1 modulo 5.

Examples

			1.01091516060101952260495658428951492...
		

Crossrefs

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[5, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021, took 20 minutes *)

Formula

Equals Sum_{k>=1} 1/A004615(k)^2. - Amiram Eldar, Jan 24 2021
Equals exp(-gamma/2)*Pi/(A340839^2*sqrt(5*log((1 + sqrt (5))/2))). - Artur Jasinski, Jan 30 2021