A340024 Number of inequivalent vertex colorings of graphs on n unlabeled vertices.
1, 1, 4, 14, 89, 788, 13712, 459380, 31395800, 4304547500, 1170501781632, 626269787446920, 657129205489027200, 1350883625562244545584, 5441806297331472273603040, 42987375826579901036722653600, 666538741644051928632441002162384, 20306710978262167791045247702178986496
Offset: 0
Keywords
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!} graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)} InequivalentColoringsSeq(graphsSeries(15))
Comments