cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340048 Numbers that are the sum of a cube s and a fourth power t such that 0 < s <= t.

Original entry on oeis.org

2, 17, 24, 82, 89, 108, 145, 257, 264, 283, 320, 381, 472, 626, 633, 652, 689, 750, 841, 968, 1137, 1297, 1304, 1323, 1360, 1421, 1512, 1639, 1808, 2025, 2296, 2402, 2409, 2428, 2465, 2526, 2617, 2744, 2913, 3130, 3401, 3732, 4097, 4104, 4123, 4129, 4160, 4221, 4312
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 26 2020

Keywords

Comments

Contains the entries of A340050 and numbers like 2, 8192, 1062882,.. which are 2 times 12th powers (A008456). - R. J. Mathar, Jan 05 2021

Examples

			24 is in the sequence since 2^3 + 2^4 = 8 + 16 = 24, where 0 < 8 <= 16.
		

Crossrefs

Programs

  • Maple
    isA340048 := proc(n)
        local t,s3 ;
        for t from 0 do
            s3 := n-t^4 ;
            if s3 <= 0 then
                return false ;
            elif s3 <= t^4 and isA000578(s3) then
                return true;
            end if;
        end do:
    end proc:
    for n from 1 do
        if isA340048(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Jan 05 2021
  • Mathematica
    Table[If[Sum[(Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/4)] - Floor[(n - i - 1)^(1/4)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1000}] // Flatten
  • Python
    def aupto(lim):
      cubes = [i**3 for i in range(1, int(lim**(1/3))+2)]
      fours = [i**4 for i in range(1, int(lim**(1/4))+2)]
      return sorted(s+t for s in cubes for t in fours if t >= s and s+t <= lim)
    print(aupto(4312)) # Michael S. Branicky, Feb 17 2021