cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340055 Primes that can be written in the form j^2 + h*k^2, where j and k are positive integers, for every h in A003173 (Heegner numbers).

Original entry on oeis.org

2333017, 5995081, 11414209, 11941273, 12953593, 14823769, 18550849, 19231969, 23582161, 26603977, 27336457, 29236729, 32630161, 35452033, 35836249, 37895089, 40411177, 42911257, 46007329, 46087057, 49680577, 49825609, 52046593, 52208017, 55624297, 63257401
Offset: 1

Views

Author

Marco Frigerio, Dec 29 2020

Keywords

Comments

The first term in this sequence is equal to last term in A338087.
The sequence is obtained using Lista(m), with m=633*10^5, see section PROG. One can increase m to obtain further terms of the sequence.

Examples

			2333017 =  989^2 + A003173(1)*1164^2
        = 1493^2 + A003173(2)*228^2
        = 1093^2 + A003173(3)*616^2
        =  685^2 + A003173(4)*516^2
        = 1349^2 + A003173(5)*216^2
        =  179^2 + A003173(6)*348^2
        = 1293^2 + A003173(7)*124^2
        = 1395^2 + A003173(8)*76^2
        = 1485^2 + A003173(9)*28^2.
		

Crossrefs

Programs

  • PARI
    Heegner()={my (d, k, v);  v=vector(3, i, i); for(k=2, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d))); return(v);}
    isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
    Primo(p, m)={my(u=Heegner()); while(pr,v=concat(v,q),q=m)); return(v);}