cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339869 Carmichael numbers k for which A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

561, 1105, 2465, 6601, 8911, 10585, 46657, 62745, 162401, 410041, 449065, 5148001, 5632705, 6313681, 6840001, 7207201, 11119105, 11921001, 19683001, 21584305, 26719701, 41298985, 55462177, 64774081, 67371265, 79411201, 83966401, 87318001, 99861985, 100427041, 172290241, 189941761, 484662529, 790623289, 809883361
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

Lehmer conjectured that the equation k * phi(n) = n - 1 (with k integer) has no solutions for any composite n (i.e., when k > 1). If this sequence has no common terms with A339818, then the conjecture certainly holds.

Crossrefs

Intersection of A002997 and A339880.
Complement of A340092 in A002997.
Cf. also A339818, A339878, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; oddPart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := Divisible[n - 1, oddPart[EulerPhi[n]]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A002322(n) = lcm(znstar(n)[2]);
    isA339869(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&!((n-1)%A000265(eulerphi(n))));

A340091 Odd numbers k such that A064989(k) is in A340151.

Original entry on oeis.org

679, 703, 1387, 1729, 1891, 2047, 2509, 2701, 2821, 3277, 3367, 5551, 7471, 7735, 8119, 8827, 9997, 10963, 11305, 12403, 13021, 13747, 13981, 14491, 14701, 15841, 16471, 17563, 19951, 21349, 21907, 21931, 22015, 23959, 24727, 25669, 26281, 27511, 28939, 29341, 31417, 32407, 38503, 39091, 39831, 39865, 40501, 41041
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Sequence A003961(A340151(i)), for i >= 1, sorted into ascending order.
By definition, this has no common terms with A340077 nor any of its subsequences like A339869 or A339880.

Crossrefs

Cf. A340092 (Carmichael numbers in this sequence).

Programs

Showing 1-2 of 2 results.