cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340384 Positions of seventeens in A340094, the Dirichlet inverse of f(n) = n - phi(n) + 1.

Original entry on oeis.org

42, 70, 154, 176, 182, 238, 266, 322, 406, 434, 518, 574, 602, 658, 742, 826, 854, 938, 994, 1022, 1106, 1162, 1246, 1250, 1358, 1414, 1442, 1498, 1526, 1582, 1664, 1778, 1834, 1918, 1946, 2086, 2114, 2198, 2282, 2338, 2422, 2506, 2534, 2674, 2702, 2758, 2786, 2954, 3122, 3178, 3206, 3262, 3346, 3374, 3514, 3598
Offset: 1

Views

Author

Antti Karttunen, Jan 07 2021

Keywords

Comments

These terms correspond to the horizontal line shown above the X-axis in the logarithmic scatter plots of A340094.
The only non-multiples of 7 among the first 13832 terms are 176, 1250, 1664. Apart from such exceptions (are there more?), all other terms are of the form 2*7*p, with p running through all odd primes in A065091 \ {7}.

Crossrefs

Programs

Formula

{n such that A340094(n) = 17}.

A340090 Dirichlet inverse of A219428, n - phi(n) - 1.

Original entry on oeis.org

-1, 0, 0, -1, 0, -3, 0, -3, -2, -5, 0, -7, 0, -7, -6, -8, 0, -11, 0, -11, -8, -11, 0, -21, -4, -13, -8, -15, 0, -21, 0, -21, -12, -17, -10, -36, 0, -19, -14, -33, 0, -29, 0, -23, -20, -23, 0, -63, -6, -29, -18, -27, 0, -47, -14, -45, -20, -29, 0, -85, 0, -31, -26, -55, -16, -45, 0, -35, -24, -45, 0, -123, 0, -37
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 2^14;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA219428(n) = (n - 1 - eulerphi(n));
    v340090 = DirInverseCorrect(vector(up_to, n, A219428(n)));
    A340090(n) = v340090[n];
    \\ Or as:
    A340090(n) = if(1==n, -1, sumdiv(n, d, if(dA219428(n/d)*A340090(d), 0)));

Formula

a(1) = -1, for n > 1, a(n) = Sum_{d|n, dA219428(n/d) * a(d).

A340198 Dirichlet inverse of sequence f(n) = A319340(n)-1 = (A000010(n) + A023900(n) - 1), where A000010 is Euler Totient function phi, and A023900 is its Dirichlet inverse.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, -1, -2, -5, 1, -8, 1, -9, -13, -9, 1, -16, 1, -22, -21, -17, 1, -28, -14, -21, -20, -36, 1, -43, 1, -31, -37, -29, -45, -49, 1, -33, -45, -62, 1, -67, 1, -64, -64, -41, 1, -69, -34, -64, -61, -78, 1, -68, -77, -96, -69, -53, 1, -88, 1, -57, -96, -79, -93, -115, 1, -106, -85, -123, 1, -95, 1, -69
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2021

Keywords

Comments

Conversely, the Dirichlet inverse of this sequence yields a sequence which is one less than A319340, i.e., pointwise sum s(n) = A109606(n) + A023900(n).
a(9796) = 0 is the only zero among the first 2^22 terms.

Crossrefs

Programs

  • PARI
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    A319340(n) = (eulerphi(n)+A023900(n));
    A340198(n) = if(1==n,1,-sumdiv(n,d,if(dA319340(n/d)-1)*A340198(d),0)));

Formula

a(1) = 1, for n > 1, a(n) = -Sum_{d|n, dA319340(n/d)-1) * a(d).
Showing 1-3 of 3 results.