cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340095 Odd composite integers m such that A052918(m-J(m,29)) == 0 (mod m) and gcd(m,29)=1, where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 15, 27, 45, 91, 121, 135, 143, 1547, 1573, 1935, 2015, 6543, 6721, 8099, 10403, 10877, 10905, 13319, 13741, 13747, 14399, 14705, 16109, 16471, 18901, 19043, 19109, 19601, 19951, 20591, 22753, 24639, 26599, 26937, 27593
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=5 and b=-1, we have D=29 and U(m) recovers A052918(m).
If even numbers greater than 2 that are coprime to 29 are allowed, then 26, 442, 6994, ... would also be terms. - Jianing Song, Jan 09 2021

References

  • D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

Crossrefs

Cf. A052918, A071904, A081264 (a=1, b=-1), A327653 (a=3, b=-1), A340096 (a=7, b=-1), A340097 (a=3, b=1), A340098 (a=5, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3,28000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[#-JacobiSymbol[#, 29], 5], #] &]

Extensions

Coprime condition added to definition by Georg Fischer, Jul 20 2022