cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340096 Odd composite integers m such that A054413(m-J(m,53)) == 0 (mod m), where J(m,53) is the Jacobi symbol.

Original entry on oeis.org

25, 35, 51, 65, 91, 175, 325, 391, 455, 575, 1247, 1295, 1633, 1763, 1775, 1921, 2275, 2407, 2599, 2651, 3367, 4199, 4579, 4623, 5629, 6441, 9959, 10465, 10825, 10877, 12025, 13021, 15155, 16021, 18881, 19019, 19039, 19307, 19669
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=7 and b=-1, we have D=53 and U(m) recovers A054413(m).
If even numbers greater than 2 that are coprime to 53 are allowed, then 10, 50, 370, 5050, ... would also be terms. - Jianing Song, Jan 09 2021

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A054413, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1)
Cf. A340097 (a=3, b=1), A340098 (a=5, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3,20000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[Fibonacci[#-JacobiSymbol[#, 53], 7], #] &]