A340097 Odd composite integers m such that A001906(m-J(m,5)) == 0 (mod m) and gcd(m,5)=1, where J(m,5) is the Jacobi symbol.
21, 323, 329, 377, 451, 861, 1081, 1819, 1891, 2033, 2211, 3653, 3827, 4089, 4181, 5671, 5777, 6601, 6721, 8149, 8557, 10877, 11309, 11663, 13201, 13861, 13981, 14701, 15251, 17119, 17513, 17711, 17941, 18407, 19043, 19951, 20473, 23407, 25369, 25651, 25877, 27323, 27511
Offset: 1
Keywords
References
- D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
Links
- D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math., 18, 47 (2021).
- D. Andrica and O. Bagdasar, On generalized pseudoprimality of level k, Mathematics 2021, 9(8), 838.
- Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.
Crossrefs
Programs
-
Mathematica
Select[Range[3, 30000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[ChebyshevU[# - JacobiSymbol[#, 5] - 1, 3/2], #] &]
Extensions
Coprime condition added to definition by Georg Fischer, Jul 20 2022
Comments