cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340098 Odd composite integers m such that A004254(m-J(m,21)) == 0 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

115, 253, 391, 527, 551, 713, 715, 779, 935, 1705, 1807, 1919, 2627, 2893, 2929, 3281, 4033, 4141, 5191, 5671, 5777, 5983, 6049, 6479, 7645, 7739, 8695, 9361, 11663, 11815, 12121, 12209, 12265, 14491, 17249, 17963, 18299, 18407, 20087, 20099, 21505, 22499, 24463
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=5 and b=1, we have D=21 and U(m) recovers A004254(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A004254, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1), A340096 (a=7, b=-1), A340097 (a=3, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[ChebyshevU[# - JacobiSymbol[#, 21] - 1, 5/2], #] &]