cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340118 Odd composite integers m such that A000045(2*m-J(m,5)) == 1 (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 10877, 11663, 13201, 13601, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 28441, 28623, 30889, 32509, 34561, 34943, 35207, 39203, 40501
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=1, D=5 and k=2, while U(m) is A000045(m) (Fibonacci sequence).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A000045, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).
Cf. A340119 (a=3, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 50000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 5], 1] - 1, #] &]

A340119 Odd composite integers m such that A006190(2*m-J(m,13)) == 1 (mod m), where J(m,13) is the Jacobi symbol.

Original entry on oeis.org

9, 27, 63, 81, 99, 119, 153, 243, 567, 649, 729, 759, 891, 903, 1071, 1189, 1377, 1431, 1539, 1763, 1881, 1953, 2133, 2187, 3599, 3897, 4187, 4585, 5103, 5313, 5559, 5589, 5819, 6561, 6681, 6831, 6993, 8019, 8127, 8829, 8855, 9639, 9999, 10611, 11135, 11691, 11961
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=3, D=13 and k=2, while U(m) is A006190(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A006190, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).
Cf. A340118 (a=1, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 12000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 13], 3] - 1, #] &]

A340120 Odd composite integers m such that A052918(2*m-J(m,29)) == 1 (mod m), where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 15, 25, 27, 45, 75, 91, 121, 125, 135, 143, 147, 175, 225, 275, 325, 375, 441, 483, 625, 675, 735, 755, 1125, 1323, 1547, 1573, 1875, 1935, 2015, 2205, 2275, 2485, 2943, 3025, 3125, 3375, 3575, 3675, 3775, 3843, 4375, 5525, 5625, 5819, 6543, 6615, 6721
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=5, D=29 and k=2, while U(m) is A052918(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A052918, A071904, A340095 (a=5, b=-1, k=1).
Cf. A340118 (a=1, b=-1, k=2), A340119 (a=3, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 29], 5] - 1, #] &]

A340238 Odd composite integers m such that A054413(3*m-J(m,53)) == 7 (mod m), where J(m,53) is the Jacobi symbol.

Original entry on oeis.org

9, 25, 27, 51, 91, 105, 153, 185, 225, 289, 325, 425, 459, 481, 513, 747, 867, 897, 925, 945, 1001, 1189, 1299, 1469, 1633, 1785, 1921, 2241, 2245, 2599, 2601, 2651, 2769, 2907, 3051, 3277, 3825, 3897, 5681, 6225, 6507, 6777, 7225, 7361, 7803, 8023, 8227, 8701, 8721
Offset: 1

Views

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=7, D=53 and k=3, while U(m) is A054413(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A054413, A071904, A340096 (a=7, b=-1, k=1), A340121 (a=7, b=-1, k=2).
Cf. A340235 (a=1, b=-1, k=3), A340236 (a=3, b=-1, k=3), A340237 (a=5, b=-1, k=3).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 53], 7] - 7, #] &]
Showing 1-4 of 4 results.