A340129 a(n) is the number of solutions of the Diophantine equation x^2 + y^2 = z^5 + z, gcd(x, y, z) = 1, x <= y, where z = A008784(n).
1, 1, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 2, 2, 16, 4, 4, 4, 2, 4, 2, 4, 4, 8, 8, 8, 4, 4, 4, 2, 8, 4, 16, 4, 16, 4, 2, 4, 16, 4, 4, 16, 4, 8, 8, 8, 4, 4, 8, 4, 8, 4, 4, 4, 16, 4, 4, 8, 2, 16, 2, 32, 2, 16, 4, 4, 2, 4, 8, 16, 4, 8, 4, 8, 4, 4, 8, 4, 16
Offset: 1
Keywords
Examples
For z = A008784(1) = 1, 1^2 + 1^2 = 1^5 + 1 is the only solution, so a(1) = 1. For z = A008784(3) = 5, 23^2 + 51^2 = 27^2 + 49^2 = 5^5 + 5 so a(3) = 2. For z = A008784(4) = 10, (97, 301, 10), (103, 299, 10), (119, 293, 10) and (163, 271, 10) are solutions, so a(4) = 4.
References
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 6, pp. 63 and 167-168 (1985).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- British Mathematical Olympiad, 1985 - Problem 6.
- Index to sequences related to Olympiads.
Programs
-
Mathematica
f[n_] := Length @ Solve[x^2 + y^2 == n^5 + n && GCD @@ {x, y, n} == 1 && 0 <= x <= y, {x, y}, Integers]; f /@ Select[Range[500], IntegerExponent[#, 2] < 2 && AllTrue[FactorInteger[#][[;; , 1]], Mod[#1, 4] < 3 &] &] (* Amiram Eldar, Jan 22 2021 *)
-
PARI
f(z) = {if (issquare(Mod(-1, z)), my(nb = 0, s = z^5+z, d, j); for (i=1, sqrtint(s), if (issquare(d = s - i^2), j = sqrtint(d); if ((j<=i) && gcd([i, j, z]) == 1, nb++););); nb;);} lista(nn) = {for (n=1, nn, if (issquare(Mod(-1, n)), print1(f(n), ", ")););} \\ Michel Marcus, Jan 20 2021
Extensions
More terms from Michel Marcus, Jan 20 2021
Comments