cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340135 Number of pairs of independent nontrivial subsets of a finite set composed of n elements.

Original entry on oeis.org

0, 0, 0, 0, 24, 0, 720, 0, 7000, 15120, 126000, 0, 1777776, 0, 23543520, 55855800, 274565720, 0, 5337775872, 0, 63026049424, 117920013120, 995265791520, 0, 15265486117744, 14283091977000, 216344919117600, 240142901941800, 2854493961432480, 0, 55689696384165720
Offset: 0

Views

Author

Jochen Ziegenbalg, Dec 29 2020

Keywords

Comments

A subset X of a set S is called a trivial subset, if it is equal to the empty set or to the full set S. The subsets A and B of a finite set S are called independent, if #A/#S * #B/#S = #(A \intersect B)/#S.

Examples

			For n=4 and S={1,2,3,4} the a(4)=24 pairs of independent nontrivial subsets of S are
{{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}, {{1, 2}, {2, 3}}, {{1, 2}, {2, 4}},
{{1, 3}, {1, 2}}, {{1, 3}, {1, 4}}, {{1, 3}, {2, 3}}, {{1, 3}, {3, 4}},
{{1, 4}, {1, 2}}, {{1, 4}, {1, 3}}, {{1, 4}, {2, 4}}, {{1, 4}, {3, 4}},
{{2, 3}, {1, 2}}, {{2, 3}, {1, 3}}, {{2, 3}, {2, 4}}, {{2, 3}, {3, 4}},
{{2, 4}, {1, 2}}, {{2, 4}, {1, 4}}, {{2, 4}, {2, 3}}, {{2, 4}, {3, 4}},
{{3, 4}, {1, 3}}, {{3, 4}, {1, 4}}, {{3, 4}, {2, 3}}, {{3, 4}, {2, 4}}
Tables:
     n                all        independent        independent
              independent             proper         nontrivial
                  subsets            subsets            subsets
            (see A121312)      (see A158345)               a(n)
     0                  1                  0                  0
     1                  4                  1                  0
     2                 12                  5                  0
     3                 28                 13                  0
     4                 84                 53                 24
     5                124                 61                  0
     6                972                845                720
     7                508                253                  0
     8               8020               7509               7000
     9              17164              16141              15120
    10             130092             128045             126000
    11               8188               4093                  0
    12            1794156            1785965            1777776
    13              32764              16381                  0
    14           23609052           23576285           23543520
    15           55986868           55921333           55855800
    16          274827860          274696789          274565720
    17             524284             262141                  0
    18         5338824444         5338300157         5337775872
    19            2097148            1048573                  0
    20        63030243724        63028146573        63026049424
    21       117928401724       117924207421       117920013120
    22       995282568732       995274180125       995265791520
    23           33554428           16777213                  0
    24     15265553226604     15265519672173     15265486117744
    25     14283226194724     14283159085861     14283091977000
    26    216345187553052    216345053335325    216344919117600
    27    240143438812708    240143170377253    240142901941800
    28   2854495035174300   2854494498303389   2854493961432480
    29         2147483644         1073741821                  0
    30  55689700679133012  55689698531649365  55689696384165720
		

Crossrefs

Cf. A121312 (independent subsets), A158345 (independent proper subsets).

Programs

  • Maxima
    /* version 1 */
    pairs_independent_nontrivial_subsets(n) :=
    block([a, b, d, s : 0 ],
      for a:1 thru n-1 do
        for d:1 thru a do
            ( b : n*d / a,
              if integerp(b) and b
    				
  • Maxima
    /* version 2 */
    a(n) :=
    sum(
      sum(
        (b : n*d / a,
         if integerp(b) and b