cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340148 a(n) = Product_{distinct primes p dividing n} gcd(q-1, A003961(n)-1), where q = A151800(p), the next prime larger than p.

Original entry on oeis.org

1, 2, 4, 2, 6, 4, 10, 2, 4, 4, 12, 8, 16, 4, 4, 2, 18, 4, 22, 4, 4, 4, 28, 4, 6, 4, 4, 4, 30, 16, 36, 2, 16, 4, 4, 8, 40, 4, 16, 4, 42, 16, 46, 8, 12, 4, 52, 8, 10, 4, 4, 16, 58, 4, 36, 4, 4, 4, 60, 8, 66, 4, 4, 2, 4, 8, 70, 4, 16, 40, 72, 4, 78, 4, 8, 4, 4, 8, 82, 4, 4, 4, 88, 8, 36, 4, 4, 4, 96, 16, 4, 8, 16
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

Prime shifted analog of A063994.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A063994(n) = { my(f=factor(n)[,1]); prod(i=1, #f, gcd(f[i]-1, n-1)); };
    A340148(n) = A063994(A003961(n));
    
  • PARI
    A340148(n) = { my(f=factor(n)[,1], u=A003961(n)); prod(i=1, #f, gcd(nextprime(1+f[i])-1, u-1)); };
    
  • PARI
    A340148(n) = { my(u=A003961(n), f=factor(u)[,1]); prod(i=1, #f, gcd(f[i]-1, u-1)); };

Formula

a(n) = A063994(A003961(n)).
a(n) = A003972(n) / A340147(n).