A340163 For n>=1, smallest integer k such that for all m>=k: m^(1/n)+(m+1)^(1/n) >= (2^n*m+2^(n-1)-1)^(1/n).
0, 0, 1, 2, 3, 7, 14, 28, 57, 115, 233, 469, 945, 1902, 3823, 7680, 15420, 30948, 62087, 124518, 249661, 500457, 1002986, 2009771, 4026532
Offset: 1
Examples
For n=6, a(6)=7, because for all m<7: m^(1/n)+(m+1)^(1/n) < (2^n*m+2^(n-1)-1)^(1/n) and for all m>=7: m^(1/n)+(m+1)^(1/n) >= (2^n*m+2^(n-1)-1)^(1/n).
References
- Srinivasa Ramanujan, Collected Papers, Question 723 in p. 332, Providence RI: AMS / Chelsea (2000).
Links
- B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), page 14 (see Q723, JIMS VII).
- MathOverflow, Generalization of a problem, involving radicals and the floor function, proposed by Ramanujan to the Journal of the Indian Mathematical Society
Comments