A339996 Numbers whose square is rotationally ambigrammatic with no trailing zeros.
0, 1, 3, 4, 9, 13, 14, 31, 33, 41, 83, 99, 103, 104, 109, 141, 247, 263, 264, 283, 301, 303, 333, 401, 436, 437, 446, 447, 781, 813, 836, 901, 947, 949, 954, 959, 999, 1003, 1004, 1009, 1053, 1054, 1291, 1349, 1367, 2467, 2486, 2609, 2849, 2949, 2986, 3001
Offset: 1
Examples
13^2 = 169. A rotationally ambigrammatic number. Hence, 13 is a term. 15^2 = 225. Not rotationally ambigrammatic and hence 15 is not a term. 10^2 = 100. This number has trailing zeros, so under this definition of rotationally ambigrammatic, 10 is not a term.
Links
- Wikipedia, Ambigram
Programs
-
Mathematica
Select[Range[0, 4001], (# == 0 || !Divisible[#, 10]) && AllTrue[IntegerDigits[#^2], MemberQ[{0, 1, 6, 8, 9}, #1] &] &] (* Amiram Eldar, Dec 26 2020 *)
-
PARI
isra(n) = (n%10) && (!setminus(Set(Vec(Str(n))), Vec("01689"))) || !n; \\ A045574 isok(n) = isra(n^2); \\ Michel Marcus, Dec 27 2020
Formula
a(n) = sqrt(A340164(n)).
Comments