A340173 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 4-point set but are incident to the same vertex in the other set.
344, 7568, 133232, 2145368, 33235784, 506005088, 7642599392, 115007387048, 1727691783224, 25933450204208, 389128287094352, 5837810104155128, 87573352325069864, 1313643690750940928, 19704959203995442112, 295576514963872161608
Offset: 3
Links
- Paolo Xausa, Table of n, a(n) for n = 3..800
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800.
Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Mathematica
A340173[n_] := 3*15^(n-1) - 8*7^(n-1) + 7*3^(n-1) - 2; Array[A340173,25,3] (* Paolo Xausa, Jul 22 2024 *)
Formula
a(n) = 3*15^(n-1) - 8*7^(n-1) + 7*3^(n-1) - 2.
From Stefano Spezia, Dec 30 2020: (Start)
G.f.: 8*x^3*(43 - 172*x + 486*x^2 - 315*x^3)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n > 6. (End)
Comments