A340174 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 5-point set but are incident to the same vertex in the other set.
2792, 140114, 5366288, 183405386, 5953824632, 188681559554, 5911452093728, 184194287464826, 5724142958302472, 177660449252559794, 5510655708296433968, 170878064308411409066, 5297936128237164553112, 164246762516365548788834, 5091810779768636860563008
Offset: 3
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (57,-1002,6562,-15381,9765).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800.
Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Cf. A048291 (number of {0,1} n X n matrices with no zero rows or columns).
Programs
-
Mathematica
Array[7*31^(# - 1) - 23*15^(# - 1) + 4*7^# - 5*3^(#) + 3 &, 15, 3] (* Michael De Vlieger, Jan 12 2021 *) LinearRecurrence[{57,-1002,6562,-15381,9765},{2792,140114,5366288,183405386,5953824632},20] (* Harvey P. Dale, Aug 11 2021 *)
Formula
a(n) = 7*31^(n-1) - 23*15^(n-1) + 4*7^n - 5*3^(n) + 3.
From Alejandro J. Becerra Jr., Feb 12 2021: (Start)
G.f.: 2*x^3*(126945*x^4 - 199953*x^3 + 88687*x^2 - 9515*x + 1396)/((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)).
a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(n-4) + 9765*a(n-5). (End)
Comments