cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340179 a(n) = Sum_{x in C(n)} (A023896(n) mod x), where C(n) is the set of numbers < n coprime to n, and A023896(n) is the sum of C(n).

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 6, 4, 15, 10, 25, 9, 33, 20, 25, 32, 49, 24, 56, 34, 68, 48, 98, 35, 152, 54, 100, 89, 180, 30, 178, 91, 146, 146, 150, 115, 314, 160, 220, 166, 315, 120, 306, 211, 267, 254, 412, 196, 485, 224, 383, 339, 600, 243, 609, 306, 481, 419, 801, 215, 859, 490, 577, 567, 782, 297, 865
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 30 2020

Keywords

Examples

			For n=8, C = {1,3,5,7}, c = 1+3+5+7 = 16, and a(n) = (16 mod 1) + (16 mod 3) + (16 mod 5) + (16 mod 7) = 0+1+1+2 = 4.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local C,s,c;
      C:=select(t -> igcd(t,n) = 1, [$1..n-1]);
      s:= convert(C,`+`);
      add(s mod c, c = C)
    end proc:
    map(f, [$1..100]);
  • Mathematica
    Table[Total@ Mod[#2, #1] & @@ {#, Total@ #} &@ Select[Range[n], GCD[#, n] == 1 &], {n, 67}] (* Michael De Vlieger, Dec 31 2020 *)
  • PARI
    apply( {A340179(n,s=n*eulerphi(n)\/2)=sum(k=2,n-1,if(gcd(n,k)<2,s%k))}, [1..66]) \\ M. F. Hasler, Feb 01 2021