cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A341061 Numbers k such that A340179(k) is prime.

Original entry on oeis.org

5, 28, 44, 51, 58, 61, 63, 90, 93, 108, 129, 136, 145, 148, 186, 208, 234, 235, 241, 247, 262, 272, 277, 278, 300, 306, 310, 314, 316, 321, 329, 335, 379, 384, 386, 414, 428, 446, 448, 449, 475, 480, 492, 514, 535, 537, 546, 548, 572, 580, 599, 609, 611, 616, 618, 626, 660, 670, 673, 680, 683
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 04 2021

Keywords

Examples

			a(3) = 44 is a term because A340179(44) = 211 is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local C, s, c;
      C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
      s:= convert(C, `+`);
      add(s mod c, c = C)
    end proc:
    select(t -> isprime(f(t)), [$1..1000]);

A341059 Numbers k such that A340179(k) is a square.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 12, 15, 17, 27, 48, 92, 6219, 24310
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 04 2021

Keywords

Examples

			a(6) = 8 is a term because A340179(8) = 4 = 2^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local C, s, c;
      C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
      s:= convert(C, `+`);
      add(s mod c, c = C)
    end proc:
    select(t -> issqr(f(t)), [$1..7000]);

A341060 Numbers k such that A340179(k) is a multiple of k.

Original entry on oeis.org

1, 2, 10, 16, 30, 74, 81, 97, 489, 525, 607, 1861, 4439, 26051
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 04 2021

Keywords

Examples

			a(4) = 16 is a term because A340179(16) = 32 = 2*16.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local C, s, c;
      C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
      s:= convert(C, `+`);
      add(s mod c, c = C)
    end proc:
    select(t -> f(t) mod t = 0, [$1..5000]);
  • Mathematica
    A340179[n_] := Total@Mod[#2, #1]& @@ {#, Total@#}& @ Select[Range[n], GCD[#, n] == 1&];
    Reap[For[k = 1, k <= 80000, k++, If[Divisible[A340179[k], k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 16 2023, after Michael De Vlieger in A340179 *)

A343883 Numbers k such that A023896(k) is a multiple of A340179(k).

Original entry on oeis.org

3, 4, 6, 8, 10, 16, 30, 54
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 02 2021

Keywords

Comments

Conjecture: there are only 8 terms.

Examples

			a(6) = 16 is a term because A023896(16) = 64 is a multiple of A340179(16) = 32.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local S,s,t;
      S:= select(t -> igcd(t,n)=1, [$1..n-1]);
      s:= nops(S)*n/2;
      s mod add(s mod t,t=S) = 0;
    end proc:
    select(filter, [$3..1000]);

A340180 a(n) = Sum_{x in C(n)} (sigma(n) mod x), where C(n) is the set of numbers < n coprime to n, and sigma = A000203.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 7, 1, 16, 4, 16, 9, 30, 23, 26, 24, 46, 19, 60, 30, 60, 52, 84, 43, 132, 77, 105, 62, 137, 51, 166, 88, 183, 139, 182, 117, 247, 186, 239, 158, 283, 99, 327, 194, 259, 284, 373, 176, 462, 234, 442, 294, 491, 235, 508, 294, 514, 430, 585, 259, 671, 519, 546, 408, 749, 323, 798
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 30 2020

Keywords

Examples

			For n=8, sigma(8) = 15 and C(8) = {1,3,5,7} so a(8) = (15 mod 1) + (15 mod 3) + (15 mod 5) + (15 mod 7) = 1.
		

Crossrefs

Cf. A000203, A340179, A337189 (n | a(n)).

Programs

  • Maple
    f := proc(n) local C,s,c;
      s:= numtheory:-sigma(n);
      C:=select(t -> igcd(t,n) = 1, [$1..n-1]);
      add(s mod c, c=C)
    end proc:
    map(f, [$1..100]);
  • Mathematica
    Table[Sum[Mod[DivisorSigma[1, n], k] Floor[1/GCD[k, n]], {k, n - 1}], {n, 80}] (* Wesley Ivan Hurt, Jan 30 2021 *)
  • PARI
    a(n) = my(s=sigma(n)); sum(k=1, n, if (gcd(k, n)==1, s % k)); \\ Michel Marcus, Jan 31 2021

A340976 Sum_{1 < k < n} sigma(n) mod k, where sigma = A000203.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 7, 8, 18, 11, 16, 27, 30, 30, 40, 47, 46, 75, 60, 72, 101, 93, 84, 109, 146, 148, 167, 142, 137, 180, 166, 197, 254, 282, 283, 301, 247, 333, 367, 347, 283, 389, 327, 367, 475, 501, 373, 591, 517, 562, 621, 597, 491, 615, 699, 637, 810, 839, 585, 783, 671, 964, 1024
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2021

Keywords

Comments

Motivated by A340180 and several other sequences that use the sum over a subset of the indices.
Is there an efficient formula for a(n)? That might answer the following questions:
1) Is a(63) = a(2^6-1) = 1024 = 2^10 just a coincidence?
2) Are there are further terms of the form 2^k, i.e., a(n) in A000079? What can be said about these n?
3) Are there other fixed points a(n) = n as for n = 7, 8?
4) What is the frequency of odd vs. even terms? a(n) is odd for consecutive indices 21..22, 35..49, 51..56, 58..61, 64..65, 68..69, 73..79, ...: Are there patterns or simple subsequence(s) of such runs of length 2 or larger?

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[DivisorSigma[1,n],k],{k,2,n-1}],{n,1,138}] (* Metin Sariyar, Feb 02 2021 *)
  • PARI
    apply( {A340976(n,s=sigma(n))=sum(k=1,n-1,s%k)}, [1..66]) \\ M. F. Hasler, Feb 01 2021
    
  • PARI
    T(n) = n*(n+1)/2;
    S(n) = my(s=sqrtint(n)); sum(k=1, s, T(n\k) + k*(n\k)) - s*T(s); \\ A024916
    g(a,b) = my(s=0); while(a <= b, my(t=b\a); my(u=b\t); s += t*(T(u) - T(a-1)); a = u+1); s;
    a(n) = (n-1)*sigma(n) - S(sigma(n)) + g(n, sigma(n)); \\ Daniel Suteu, Feb 02 2021

Formula

a(n) = (n-1)*sigma(n) - A024916(sigma(n)) + Sum_{k=n..sigma(n)} k*floor(sigma(n)/k). - Daniel Suteu, Feb 02 2021
Showing 1-6 of 6 results.