A341059
Numbers k such that A340179(k) is a square.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 11, 12, 15, 17, 27, 48, 92, 6219, 24310
Offset: 1
a(6) = 8 is a term because A340179(8) = 4 = 2^2.
-
f:= proc(n) local C, s, c;
C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
s:= convert(C, `+`);
add(s mod c, c = C)
end proc:
select(t -> issqr(f(t)), [$1..7000]);
A341060
Numbers k such that A340179(k) is a multiple of k.
Original entry on oeis.org
1, 2, 10, 16, 30, 74, 81, 97, 489, 525, 607, 1861, 4439, 26051
Offset: 1
a(4) = 16 is a term because A340179(16) = 32 = 2*16.
-
f:= proc(n) local C, s, c;
C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
s:= convert(C, `+`);
add(s mod c, c = C)
end proc:
select(t -> f(t) mod t = 0, [$1..5000]);
-
A340179[n_] := Total@Mod[#2, #1]& @@ {#, Total@#}& @ Select[Range[n], GCD[#, n] == 1&];
Reap[For[k = 1, k <= 80000, k++, If[Divisible[A340179[k], k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 16 2023, after Michael De Vlieger in A340179 *)
Showing 1-2 of 2 results.