cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341061 Numbers k such that A340179(k) is prime.

Original entry on oeis.org

5, 28, 44, 51, 58, 61, 63, 90, 93, 108, 129, 136, 145, 148, 186, 208, 234, 235, 241, 247, 262, 272, 277, 278, 300, 306, 310, 314, 316, 321, 329, 335, 379, 384, 386, 414, 428, 446, 448, 449, 475, 480, 492, 514, 535, 537, 546, 548, 572, 580, 599, 609, 611, 616, 618, 626, 660, 670, 673, 680, 683
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 04 2021

Keywords

Examples

			a(3) = 44 is a term because A340179(44) = 211 is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local C, s, c;
      C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
      s:= convert(C, `+`);
      add(s mod c, c = C)
    end proc:
    select(t -> isprime(f(t)), [$1..1000]);

A341060 Numbers k such that A340179(k) is a multiple of k.

Original entry on oeis.org

1, 2, 10, 16, 30, 74, 81, 97, 489, 525, 607, 1861, 4439, 26051
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 04 2021

Keywords

Examples

			a(4) = 16 is a term because A340179(16) = 32 = 2*16.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local C, s, c;
      C:=select(t -> igcd(t, n) = 1, [$1..n-1]);
      s:= convert(C, `+`);
      add(s mod c, c = C)
    end proc:
    select(t -> f(t) mod t = 0, [$1..5000]);
  • Mathematica
    A340179[n_] := Total@Mod[#2, #1]& @@ {#, Total@#}& @ Select[Range[n], GCD[#, n] == 1&];
    Reap[For[k = 1, k <= 80000, k++, If[Divisible[A340179[k], k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 16 2023, after Michael De Vlieger in A340179 *)
Showing 1-2 of 2 results.