cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340189 a(n) = n + A340187(n).

Original entry on oeis.org

2, 1, 1, 4, 1, 9, 1, 8, 11, 17, 1, 11, 1, 25, 27, 16, 1, 13, 1, 17, 41, 41, 1, 24, 37, 49, 25, 21, 1, 1, 1, 32, 69, 65, 79, 40, 1, 73, 83, 40, 1, -7, 1, 35, 21, 89, 1, 48, 79, 17, 111, 39, 1, 61, 131, 60, 125, 113, 1, 83, 1, 121, 27, 64, 145, -27, 1, 53, 153, -49, 1, 71, 1, 145, 23, 57, 193, -31, 1, 80, 83, 161, 1, 131
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA063994(n)));
    A340187(n) = v340187[n];
    A340189(n) = (n+A340187(n));

Formula

a(n) = n + A340187(n).
a(n) = A340188(n) + A318828(n).

A340188 Sum of A063994 and its Dirichlet inverse, where A063994(x) = Product_{primes p dividing x} gcd(p-1, x-1).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 1, 4, 8, 0, 0, 0, 12, 16, 1, 0, -4, 0, -2, 24, 20, 0, 1, 16, 24, 0, -4, 0, -28, 0, 1, 40, 32, 48, 5, 0, 36, 48, 1, 0, -48, 0, -8, -16, 44, 0, 1, 36, -32, 64, -10, 0, 8, 80, 5, 72, 56, 0, 24, 0, 60, -32, 1, 96, -88, 0, -14, 88, -116, 0, 0, 0, 72, -48, -16, 120, -108, 0, 1, 4, 80, 0, 48, 128, 84, 112
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA063994(n)));
    A340187(n) = v340187[n];
    A340188(n) = (A063994(n)+A340187(n));

Formula

a(n) = A063994(n) + A340187(n).
a(n) = A340189(n) - A318828(n).
Showing 1-2 of 2 results.