cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340207 Constant whose decimal expansion is the concatenation of the largest n-digit square A061433(n), for n = 1, 2, 3, ...

Original entry on oeis.org

9, 8, 1, 9, 6, 1, 9, 8, 0, 1, 9, 9, 8, 5, 6, 9, 9, 8, 0, 0, 1, 9, 9, 9, 8, 2, 4, 4, 9, 9, 9, 8, 0, 0, 0, 1, 9, 9, 9, 9, 5, 0, 8, 8, 4, 9, 9, 9, 9, 8, 0, 0, 0, 0, 1, 9, 9, 9, 9, 9, 5, 1, 5, 5, 2, 9, 9, 9, 9, 9, 9, 8, 0, 0, 0, 0, 0, 1, 9, 9, 9, 9, 9, 9, 5, 8
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A339978 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The largest square with 1, 2, 3, 4, ... digits is, respectively, 9 = 3^2, 81 = 9^2, 961 = 31^2, 9801 = 99^2, ....
Here we list the sequence of digits of these numbers: 9; 8, 1; 9, 6, 1; 9, 8, 0, 1; 9, 9, 8, 5, 6; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.98196198...
		

Crossrefs

Cf. A061433 (largest n-digit square), A339978 (has this as "limit"), A340208 (same with "smallest n-digit cube", limit of A215692), A340209 (same for cubes, limit of A340115), A340220 (same for primes), A340219 (similar, with smallest primes, limit of A215641), A340222 (same for semiprimes), A340221 (same for smallest semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • Mathematica
    lnds[k_]:=Module[{c=Sqrt[10^k]},If[IntegerQ[c],(c-1)^2,Floor[c]^2]]; Flatten[IntegerDigits/@(lnds/@Range[15])] (* Harvey P. Dale, Dec 16 2021 *)
  • PARI
    concat([digits(sqrtint(10^k-1)^2)|k<-[1..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*sqrtint(10^k-1)^2) \\ as constant

Formula

c = 0.9819619801998569980019998244999800019999508849999800001999995155...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/2)-1)^2
a(-n(n+1)/2) = 9 for all n >= 2.