A340227 Number of pairs of divisors of n, (d1,d2), such that d1 < d2 and d1*d2 is squarefree.
0, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 4, 1, 1, 4, 1, 4, 4, 4, 1, 4, 1, 4, 1, 4, 1, 13, 1, 1, 4, 4, 4, 4, 1, 4, 4, 4, 1, 13, 1, 4, 4, 4, 1, 4, 1, 4, 4, 4, 1, 4, 4, 4, 4, 4, 1, 13, 1, 4, 4, 1, 4, 13, 1, 4, 4, 13, 1, 4, 1, 4, 4, 4, 4, 13, 1, 4, 1, 4, 1, 13, 4, 4, 4, 4, 1, 13
Offset: 1
Keywords
Examples
a(28) = 4; (1,2), (1,7), (1,14), (2,7) a(29) = 1; (1,29) a(30) = 13; (1,2), (1,3), (1,5), (1,6), (1,10), (1,15), (1,30), (2,3), (2,5), (2,15), (3,5), (3,10), (5,6) a(31) = 1; (1,31)
Programs
-
Maple
with(numtheory): seq((3^nops(factorset(n))-1)/2, n=1..100); # Ridouane Oudra, Jan 27 2025
-
Mathematica
Table[Sum[Sum[MoebiusMu[i*k]^2 (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}]
Formula
Sum_{d1|n, d2|n, d1A008683).
a(n) = (A074816(n) - 1)/2. - Ridouane Oudra, Jan 27 2025
Comments