cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340241 Odd composite integers m such that A004187(3*m-J(m,45)) == 7*J(m,45) (mod m) and gcd(m,45)=1, where J(m,45) is the Jacobi symbol.

Original entry on oeis.org

161, 323, 329, 341, 377, 451, 671, 901, 1007, 1079, 1081, 1271, 1819, 1853, 1891, 2033, 2071, 2209, 2407, 2461, 2501, 2743, 3653, 3827, 4181, 4843, 5473, 5611, 5671, 5777, 6119, 6601, 6721, 7429, 7567, 7721, 8149, 8399, 8473, 8557, 9821, 9881, 10207, 10877, 11041, 11207, 11309, 11663
Offset: 1

Views

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1)*J(m,D) (mod m) are called generalized Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=7, D=45 and k=3, while U(m) is A004187(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A004187, A071904, A340099 (a=7, b=1, k=1), A340124 (a=7, b=1, k=2).
Cf. A340239 (a=3, b=1, k=3), A340240 (a=5, b=1, k=3).

Programs

  • Mathematica
    Select[Range[3, 12000, 2], CoprimeQ[#, 45] && CompositeQ[#] &&  Divisible[ ChebyshevU[3*# - JacobiSymbol[#, 45] - 1, 7/2] - 7*JacobiSymbol[#, 45],  #] &]