cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340269 Numbers k > 1 such that lpf(k)-1 does not divide d-1 for at least one divisor d of k, where lpf(k) is the least prime factor of k (A020639).

Original entry on oeis.org

35, 55, 77, 95, 115, 119, 143, 155, 161, 175, 187, 203, 209, 215, 221, 235, 245, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 385, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581
Offset: 1

Views

Author

Maxim Karimov, Jan 02 2021

Keywords

Comments

No terms are divisible by 2 or 3; no terms are in A000961. - Robert Israel, Oct 10 2023

Crossrefs

Programs

  • MATLAB
    n=300; % gives all terms of the sequence not exceeding n
    A=[];
    for i=2:n
        lpf=2;
        while mod(i,lpf)~=0
            lpf=lpf+1;
        end
        for d=1:i
            if mod(i,d)==0 && mod(d-1,lpf-1)~=0
                A=[A i];
                break
            end
        end
    end
  • Maple
    with(numtheory):
    q:= n-> (f-> ormap(d-> irem(d-1, f)>0, divisors(n)))(min(factorset(n))-1):
    select(q, [$2..600])[];  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    Select[Range[2, 600], Function[{d, k}, AnyTrue[d, Mod[#, k] != 0 &]] @@ {Divisors[#] - 1, FactorInteger[#][[1, 1]] - 1} &] (* Michael De Vlieger, Feb 12 2021 *)
Showing 1-1 of 1 results.