A340380 Numbers whose odd part is a squarefree semiprime (A006881); numbers of the form 2^k * p * q, with k >= 0, and distinct odd primes p and q.
15, 21, 30, 33, 35, 39, 42, 51, 55, 57, 60, 65, 66, 69, 70, 77, 78, 84, 85, 87, 91, 93, 95, 102, 110, 111, 114, 115, 119, 120, 123, 129, 130, 132, 133, 138, 140, 141, 143, 145, 154, 155, 156, 159, 161, 168, 170, 174, 177, 182, 183, 185, 186, 187, 190, 201, 203, 204, 205, 209, 213, 215, 217, 219, 220, 221, 222, 228, 230
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..24567; terms < 2^16
Crossrefs
Programs
-
Mathematica
semiQ[n_] := FactorInteger[n][[;;,2]] == {1, 1}; Select[Range[230], semiQ[#/2^IntegerExponent[#, 2]] &] (* Amiram Eldar, Jan 03 2022 *)
-
PARI
isA340380(n) = A340370(n); \\ Uses the program given in A340370.
Formula
Sum_{n>=1} 1/a(n)^s = (2^s/(2^s-1)) * ((1/2)*(P(s)^2 - P(2*s)) + 1/4^s - P(s)/2^s), for s>1, where P is the prime zeta function. - Amiram Eldar, Jan 03 2022