A340409 Number of sets of nonempty words with a total of n letters over binary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 3, 7, 18, 42, 110, 250, 627, 1439, 3523, 8063, 19374, 44274, 104816, 238976, 559171, 1271295, 2946901, 6679741, 15363719, 34719631, 79335385, 178749829, 406164359, 912475815, 2063298409, 4622461673, 10407679805, 23254807241, 52160338735, 116252939071
Offset: 0
Keywords
Examples
a(3) = 7: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) end: a:= n-> h(n$2, min(n, 2)): seq(a(n), n=0..32);
Formula
G.f.: Product_{j>=1} (1+x^j)^A027306(j).