cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340409 Number of sets of nonempty words with a total of n letters over binary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 3, 7, 18, 42, 110, 250, 627, 1439, 3523, 8063, 19374, 44274, 104816, 238976, 559171, 1271295, 2946901, 6679741, 15363719, 34719631, 79335385, 178749829, 406164359, 912475815, 2063298409, 4622461673, 10407679805, 23254807241, 52160338735, 116252939071
Offset: 0

Views

Author

Alois P. Heinz, Jan 06 2021

Keywords

Examples

			a(3) = 7: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}.
		

Crossrefs

Column k=2 of A292795.
Cf. A027306.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
          add(b(n-j, j, t-1)/j!, j=i..n/t))
        end:
    g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
        end:
    a:= n-> h(n$2, min(n, 2)):
    seq(a(n), n=0..32);

Formula

G.f.: Product_{j>=1} (1+x^j)^A027306(j).