A340412 Number of sets of nonempty words with a total of n letters over quinary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 3, 13, 60, 326, 1345, 6228, 29845, 143899, 732765, 3412167, 16623175, 81624325, 400892932, 2018593583, 9773821243, 48292202375, 239383150209, 1186254809797, 5960931333905, 29322695430795, 145800954979162, 726137079681765, 3616351096084351
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) end: a:= n-> h(n$2, min(n, 5)): seq(a(n), n=0..32);
Formula
G.f.: Product_{j>=1} (1+x^j)^A226875(j).