A340416 Number of sets of nonempty words with a total of n letters over nonary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 3, 13, 60, 326, 2065, 14508, 116845, 1039459, 6710565, 48872487, 350817295, 2619846205, 20019859960, 158415989711, 1300359929707, 10644485545679, 91963547963925, 715052566412773, 5842504427274965, 47435773495721103, 390005026265914606, 3225674439739003413
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) end: a:= n-> h(n$2, min(n, 9)): seq(a(n), n=0..32);
Formula
G.f.: Product_{j>=1} (1+x^j)^A226879(j).