A340417 Number of sets of nonempty words with a total of n letters over denary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 3, 13, 60, 326, 2065, 14508, 116845, 1039459, 10339365, 72459687, 581246095, 4483235005, 36697945720, 298344453071, 2601248199787, 22469318990159, 208007606797845, 1867498245975013, 17978675539264085, 153181998023380623, 1392447676785436846
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) end: a:= n-> h(n$2, min(n, 10)): seq(a(n), n=0..32);
Formula
G.f.: Product_{j>=1} (1+x^j)^A226880(j).