A340428 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - sin(a*Pi/(2*n+1))^2 * sin(b*Pi/(2*k+1))^2).
1, 1, 1, 1, 7, 1, 1, 61, 61, 1, 1, 547, 4961, 547, 1, 1, 4921, 432461, 432461, 4921, 1, 1, 44287, 38484961, 371647151, 38484961, 44287, 1, 1, 398581, 3445022461, 330435708793, 330435708793, 3445022461, 398581, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 7, 61, 547, 4921, ... 1, 61, 4961, 432461, 38484961, ... 1, 547, 432461, 371647151, 330435708793, ... 1, 4921, 38484961, 330435708793, 2952717950351617, ...
Programs
-
PARI
default(realprecision, 120); {T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(sin(a*Pi/(2*n+1))*sin(b*Pi/(2*k+1)))^2)))}
Formula
T(n,k) = T(k,n).