A340444 a(n) is the least prime of the form p*q + p*r + q*r where p is the n-th prime and q and r are primes < p, or 0 if there are none.
0, 0, 31, 41, 61, 71, 151, 101, 199, 151, 227, 191, 211, 311, 241, 271, 487, 311, 479, 653, 521, 401, 421, 727, 491, 823, 521, 541, 773, 571, 641, 661, 691, 701, 751, 761, 1109, 821, 2039, 1399, 1447, 911, 1543, 971, 991, 1607, 1061, 1571, 1831, 1151, 1171, 1201, 1697, 2273, 1291, 1321, 2711
Offset: 1
Examples
a(7) = 151 because prime(7) = 17, and 151 = 17*3+17*5+3*5 is the least prime of the form 17*p + 17*q + p*q.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
f:= proc(n) local p,L,i,j,t; p:= ithprime(n); L:= sort([seq(seq((ithprime(i)+p)*(ithprime(j)+p)-p^2, i=1..j-1),j=2..n-1)]); for t in L do if isprime(t) then return t fi od: 0 end proc: A:= map(f, [$1..100]);
-
Python
from sympy import isprime, prime def aupto(nn): alst, plst = [0 for i in range(nn)], [prime(i+1) for i in range(nn)] for n in range(1, nn+1): p = plst[n-1] t = ((p, plst[i], plst[j]) for i in range(n-2) for j in range(i+1, n-1)) for s in sorted(p*q + p*r + q*r for p, q, r in t): if isprime(s): alst[n-1]=s; break return alst print(aupto(57)) # Michael S. Branicky, Jan 07 2021
Comments