cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340464 Primes of the form p*q+r*s+t*u, where p,q,r,s,t,u are consecutive primes.

Original entry on oeis.org

313, 2137, 7853, 10847, 17911, 43961, 130631, 138239, 145967, 154723, 175463, 192853, 331871, 359377, 436481, 676253, 713807, 824437, 907969, 1037557, 2637959, 2683151, 3050543, 3228437, 3341369, 3676639, 3833723, 4196513, 4412081, 4793713, 4961497, 5614957, 5727791, 5976209, 8122097, 8201213
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 08 2021

Keywords

Examples

			a(3)=41*43+47*53+59*61=7853, where 41,43,47,53,59,61 are consecutive primes and 7853 is prime.
		

Crossrefs

Cf. A340463.

Programs

  • Maple
    select(isprime, map(i -> ithprime(i)*ithprime(i+1)+ithprime(i+2)*ithprime(i+3)+ithprime(i+4)*ithprime(i+5), [$1..1000]));
  • Python
    from sympy import nextprime, isprime
    def aupto(nn):
      alst, consec6 = [], [2, 3, 5, 7, 11, 13]
      p, q, r, s, t, u = consec6; prod = p*q+r*s+t*u
      while prod <= nn:
        if isprime(prod): alst.append(prod)
        consec6 = consec6[1:] + [nextprime(consec6[-1])]
        p, q, r, s, t, u = consec6; prod = p*q+r*s+t*u
      return alst
    print(aupto(10**8)) # Michael S. Branicky, Jan 08 2021

Formula

a(n)=prime(m)*prime(m+1)+prime(m+2)*prime(m+3)+prime(m+4)*prime(m+5) where A340463(n)=prime(m).
Showing 1-1 of 1 results.