A340492 a(n) = A000041(n)*A000070(n-1), n >= 1.
1, 4, 12, 35, 84, 209, 450, 990, 2010, 4074, 7784, 15015, 27472, 50355, 89408, 158004, 271755, 466620, 782530, 1308549, 2149488, 3513012, 5657540, 9076725, 14367804, 22645056, 35313320, 54810756, 84269900, 129032100, 195879618, 296147379, 444466260, 664284530, 986341059, 1458941412
Offset: 1
Keywords
Examples
Illustration of initial terms: A000070: 1 2 4 7 12 19 30 A000041 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 |_| | | | | | | 2 |_ _| | | | | | 3 |_ _ _ _| | | | | | | | | | 5 |_ _ _ _ _ _ _| | | | | | | | 7 |_ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | 11 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | 15 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| ... a(n) is the area (or the number of cells) in the n-th rectangle of the diagram. For n = 3 the third rectangle of the diagram contains 3*4 = 12 cells, so a(3) = 12 For n = 7 the seventh rectangle of the diagram contains 15*30 = 450 cells, so a(7) = 450.
Programs
-
Mathematica
a[n_] := PartitionsP[n]*Count[Flatten[IntegerPartitions[n]], 1]; Table[a[n], {n, 1, 36}] (* Robert P. P. McKone, Jan 28 2021 *)
-
PARI
a(n) = numbpart(n)*sum(k=0, n-1, numbpart(k)); \\ Michel Marcus, Jan 28 2021
Comments