cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340508 Let ped(n) denote the number of partitions of n in which the even parts are distinct (A001935); a(n) = ped(9*n+7).

Original entry on oeis.org

12, 132, 876, 4416, 18624, 69060, 232044, 720648, 2097612, 5781120, 15203904, 38387556, 93503052, 220586244, 505673280, 1129518564, 2464116480, 5260683840, 11010018840, 22623235620, 45700246668, 90863466372, 178000194348, 343888491684, 655760533632, 1235186054724
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2021

Keywords

Comments

These are the coefficients in the left-hand side of a "surprising identity" [Hirschhorn].

References

  • M. D. Hirschhorn, The Power of q, Springer, 2017. See (33.1.3) page 303.

Crossrefs

A subsequence of A001935.
Cf. A226034.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    a:= n-> b(9*n+7):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 26 2021
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Sum[
       If[Mod[d, 4] == 0, 0, d], {d, Divisors[j]}], {j, 1, n}]/n];
    a[n_] := b[9n+7];
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)

Formula

a(n) = 12 * A226034(n).