A367068 a(n) = ((Sum_{i=1..n} A340510(i))-1)/(n+1).
0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42
Offset: 1
Keywords
Links
- Muharem Avdispahić and Faruk Zejnulahi, An integer sequence with a divisibility property, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333.
Programs
-
Maple
A367068 := proc(n) add(A340510(i),i=1..n)-1 ; %/(n+1) ; end proc: seq(A367068(n),n=1..50) ; # R. J. Mathar, Jan 30 2024
-
Mathematica
zlist = {-1, 1, 3}; mlist = {-1, 0, 1}; For[n = 3, n <= 101, n++, If[MemberQ[zlist, mlist[[n]]], AppendTo[mlist, mlist[[n]] + 1]; AppendTo[zlist, mlist[[n + 1]] + n];, AppendTo[mlist, mlist[[n]]]; AppendTo[zlist, mlist[[n + 1]]];];]; mlist = Drop[mlist, 1]; mlist
-
Python
z_list=[-1, 1, 3] m_list=[-1, 0, 1] n=2 for n in range(2, 100): if m_list[n] in z_list: m_list.append(m_list[n] + 1) z_list.append(m_list[n+1] + n+1) else: m_list.append(m_list[n]) z_list.append(m_list[n+1]) print(m_list[1:])
Comments