cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340554 T(n, k) = [x^k] hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x). Triangle read by rows, T(n, k) for n >= 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 10, 5, 1, 36, 126, 84, 9, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 528, 40920, 1107568, 13884156, 92561040, 354817320, 818809200, 1166803110, 1037158320, 573166440, 193536720, 38567100, 4272048, 237336, 5456, 33
Offset: 0

Views

Author

Peter Luschny, Feb 03 2021

Keywords

Examples

			Triangle starts:
                           [0] 1, 1
                           [1] 1, 3
                         [2] 1, 10, 5
                     [3] 1, 36, 126, 84, 9
     [4] 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17
		

Crossrefs

Cf. A001146 (row sums), A000051 (main diagonal), A016131 (central terms), A201461, A028297.

Programs

  • Magma
    p:= func< n | n eq 0 select 1 else 2^(n-1) >;
    T:= func< n,k | Factorial(2^n+1)/(Factorial(2*k)*Factorial(2^n-2*k+1)) >;
    [T(n,k): k in [0..p(n)], n in [0..8]]; // G. C. Greubel, Dec 30 2024
    
  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
    Tpoly := proc(n) simplify(hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x)):
    CoeffList(%) end: seq(Tpoly(n), n = 0..5);
  • Mathematica
    Tpoly[n_] := HypergeometricPFQ[{-2^n/2, -2^n/2 - 1/2}, {1/2}, x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 5}] // Flatten
  • SageMath
    # from sage.all import * # (use for Python)
    def p(n): return 1 if n==0 else pow(2,n-1)
    def T(n,k): return rising_factorial(-pow(2,n)-1, 2*k)/factorial(2*k)
    print(flatten([[T(n,k) for k in range(p(n)+1)] for n in range(8)])) # G. C. Greubel, Dec 30 2024

Formula

T(n, k) = (2^n + 1)!/((2*k)! * (2^n - 2*k + 1)!), for n >= 0, 0 <= k <= p(n), where p(n) = 1 if n = 0 otherwise p(n) = 2^(n-1). Alternative form: T(n, k) = Pochhammer(-2^n - 1, 2*k)/(2*k)!. - G. C. Greubel, Dec 30 2024