A340560 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*sin(b*Pi/k)^2).
1, 1, 1, 1, 8, 1, 1, 49, 49, 1, 1, 288, 1296, 288, 1, 1, 1681, 30625, 30625, 1681, 1, 1, 9800, 707281, 2654208, 707281, 9800, 1, 1, 57121, 16257024, 219069601, 219069601, 16257024, 57121, 1, 1, 332928, 373301041, 17860500000, 62500000000, 17860500000, 373301041, 332928, 1
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 8, 49, 288, 1681, ... 1, 49, 1296, 30625, 707281, ... 1, 288, 30625, 2654208, 219069601, ... 1, 1681, 707281, 219069601, 62500000000, ...
Crossrefs
Programs
-
PARI
default(realprecision, 120); {T(n, k) = round(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))}
Formula
T(n,k) = T(k,n).
T(n,k) = A212796(n,k)/(n*k).