cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340564 Primes p such that the sum of (p mod q) for primes q < p is prime.

Original entry on oeis.org

5, 13, 23, 113, 137, 151, 163, 251, 317, 461, 479, 487, 521, 661, 691, 719, 887, 907, 991, 1129, 1213, 1453, 1901, 1949, 1987, 2053, 2141, 2243, 2333, 2399, 2549, 2797, 3041, 3049, 3119, 3221, 3433, 3457, 3527, 3529, 3691, 3697, 3911, 4013, 4241, 4649, 4817, 5099, 5407, 5413, 5689, 5693, 6217
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 11 2021

Keywords

Comments

a(n) = prime(m) if A033955(m) is prime.

Examples

			a(3) = 23 is a term because (23 mod 2) + ... + (23 mod 19) = 1+2+3+2+1+10+6+4 = 29 is prime.
		

Crossrefs

Cf. A033955.

Programs

  • Maple
    f:= proc(n) local i,p;
      p:= ithprime(n);
      add(p mod ithprime(i),i=1..n-1)
    end proc:
    map(ithprime, select(t -> isprime(f(t)), [$1..2000]));
  • PARI
    isok(p) = if (isprime(p), my(s=0); forprime(q=2, precprime(p-1), s += p % q); isprime(s);); \\ Michel Marcus, Jan 11 2021