cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340583 Triangle read by rows: T(n,k) = A002865(n-k)*A000203(k), 1 <= k <= n.

Original entry on oeis.org

1, 0, 3, 1, 0, 4, 1, 3, 0, 7, 2, 3, 4, 0, 6, 2, 6, 4, 7, 0, 12, 4, 6, 8, 7, 6, 0, 8, 4, 12, 8, 14, 6, 12, 0, 15, 7, 12, 16, 14, 12, 12, 8, 0, 13, 8, 21, 16, 28, 12, 24, 8, 15, 0, 18, 12, 24, 28, 28, 24, 24, 16, 15, 13, 0, 12, 14, 36, 32, 49, 24, 48, 16, 30, 13, 18, 0, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 15 2021

Keywords

Comments

T(n,k) is the total number of cubic cells added at n-th stage to the right prisms whose bases are the parts of the symmetric representation of sigma(k) in the polycube described in A221529.
Partial sums of column k gives the column k of A221529.

Examples

			Triangle begins:
   1;
   0,  3;
   1,  0,  4;
   1,  3,  0,  7;
   2,  3,  4,  0,  6;
   2,  6,  4,  7,  0, 12;
   4,  6,  8,  7,  6,  0,  8;
   4, 12,  8, 14,  6, 12,  0, 15;
   7, 12, 16, 14, 12, 12,  8,  0, 13;
   8, 21, 16, 28, 12, 24,  8, 15,  0, 18;
  12, 24, 28, 28, 24, 24, 16, 15, 13,  0, 12;
  14, 36, 32, 49, 24, 48, 16, 30, 13, 18,  0, 28;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k   A000203         T(6,k)
--------------------------
1      1   *   2  =    2
2      3   *   2   =   6
3      4   *   1   =   4
4      7   *   1   =   7
5      6   *   0   =   0
6     12   *   1   =  12
.           A002865
--------------------------
The sum of row 6 is 2 + 6 + 4 + 7 + 0 + 12 = 31, equaling A138879(6).
		

Crossrefs

Row sums give A138879.
Column 1 gives A002865.
Diagonals 1, 3 and 4 give A000203.
Diagonal 2 gives A000004.
Diagonals 5 and 6 give A074400.
Diagonals 7 and 8 give A239050.
Diagonal 9 gives A319527.
Diagonal 10 gives A319528.
Cf. A221529 (partial column sums).
Cf. A340426 (mirror).

Programs

  • Mathematica
    A340583[n_, k_] := (PartitionsP[n - k] - PartitionsP[(n - k) - 1])*
       DivisorSigma[1, k];
    Table[A340583[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Robert P. P. McKone, Jan 25 2021 *)