cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340585 Noncube perfect powers.

Original entry on oeis.org

4, 9, 16, 25, 32, 36, 49, 81, 100, 121, 128, 144, 169, 196, 225, 243, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2048, 2116, 2187, 2209, 2304, 2401, 2500
Offset: 1

Views

Author

Hugo Pfoertner, Jan 12 2021

Keywords

Comments

This was the original definition of A239870. However, the true definition of that sequence seems to be slightly different.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local g;
      g:= igcd(op(ifactors(n)[2][..,2]));
      g > 1 and (g mod 3 <> 0)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jan 12 2021
  • Mathematica
    Select[Range[2, 2500], (g = GCD @@ FactorInteger[#][[;; , 2]]) > 1 && !Divisible[g, 3] &] (* Amiram Eldar, Jan 12 2021 *)
  • PARI
    for(n=2,2500,if( ispower(n) % 3, print1(n,", ")))
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A340585(n):
        def f(x): return int(n+x-isqrt(x)+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(5,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 1 - zeta(3) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 1 - A002117 + A072102 = 0.6724074652... - Amiram Eldar, Jan 12 2021