A340585 Noncube perfect powers.
4, 9, 16, 25, 32, 36, 49, 81, 100, 121, 128, 144, 169, 196, 225, 243, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2048, 2116, 2187, 2209, 2304, 2401, 2500
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local g; g:= igcd(op(ifactors(n)[2][..,2])); g > 1 and (g mod 3 <> 0) end proc: select(filter, [$1..10000]); # Robert Israel, Jan 12 2021
-
Mathematica
Select[Range[2, 2500], (g = GCD @@ FactorInteger[#][[;; , 2]]) > 1 && !Divisible[g, 3] &] (* Amiram Eldar, Jan 12 2021 *)
-
PARI
for(n=2,2500,if( ispower(n) % 3, print1(n,", ")))
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A340585(n): def f(x): return int(n+x-isqrt(x)+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(5,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
Formula
Sum_{n>=1} 1/a(n) = 1 - zeta(3) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 1 - A002117 + A072102 = 0.6724074652... - Amiram Eldar, Jan 12 2021
Comments