cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340571 Number of partitions of n into 4 parts with at least one even part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 11, 10, 18, 17, 27, 25, 39, 36, 54, 49, 72, 66, 94, 85, 120, 109, 150, 135, 185, 167, 225, 202, 270, 243, 321, 287, 378, 339, 441, 394, 511, 457, 588, 524, 672, 600, 764, 680, 864, 770, 972, 864, 1089, 969, 1215, 1079, 1350, 1200, 1495, 1326
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 11 2021

Keywords

Examples

			a(5) = 1; [2,1,1,1];
a(7) = 3; [4,1,1,1], [3,2,1,1], [2,2,2,1];
a(9) = 6; [6,1,1,1], [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1], [3,2,2,2].
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[1 - Mod[k, 2] Mod[j, 2] Mod[i, 2] Mod[n - i - k - j, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (1 - (k mod 2) * (j mod 2) * (i mod 2) * ((n-i-j-k) mod 2)).
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( ((k+1) mod 2) + ((j+1) mod 2) + ((i+1) mod 2) + ((n-i-j-k+1) mod 2) ).
Showing 1-1 of 1 results.