A340590 Number of n*(n+1)-step n-dimensional nonnegative closed lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 16, 24444, 8204167296, 1052109889288796160, 78607706455594117933558272000, 4825997038234002956322487606996722432307200, 325844502690869718672482402463320899403011435565608069632000, 31176247959648026790291638390172796940342899651173947284143811081979726010777600
Offset: 0
Examples
a(2) = 16: [(0,0),(1,1),(0,1),(0,0),(1,1),(0,1),(0,0)], [(0,0),(1,1),(0,1),(0,0),(1,1),(1,0),(0,0)], [(0,0),(1,1),(0,1),(1,2),(0,2),(0,1),(0,0)], [(0,0),(1,1),(0,1),(1,2),(1,1),(0,1),(0,0)], [(0,0),(1,1),(0,1),(1,2),(1,1),(1,0),(0,0)], [(0,0),(1,1),(1,0),(0,0),(1,1),(0,1),(0,0)], [(0,0),(1,1),(1,0),(0,0),(1,1),(1,0),(0,0)], [(0,0),(1,1),(1,0),(2,1),(1,1),(0,1),(0,0)], [(0,0),(1,1),(1,0),(2,1),(1,1),(1,0),(0,0)], [(0,0),(1,1),(1,0),(2,1),(2,0),(1,0),(0,0)], [(0,0),(1,1),(2,2),(1,2),(0,2),(0,1),(0,0)], [(0,0),(1,1),(2,2),(1,2),(1,1),(0,1),(0,0)], [(0,0),(1,1),(2,2),(1,2),(1,1),(1,0),(0,0)], [(0,0),(1,1),(2,2),(2,1),(1,1),(0,1),(0,0)], [(0,0),(1,1),(2,2),(2,1),(1,1),(1,0),(0,0)], [(0,0),(1,1),(2,2),(2,1),(2,0),(1,0),(0,0)].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> add( `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..k)+ `if`(add(i, i=l)+k
x+1, l)), 0))(nops(l))) end: a:= n-> b(n*(n+1), [0$n]): seq(a(n), n=0..9); -
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, 1, Function[k, Sum[ If[l[[i]]>0, b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, k}] + If[Sum[i, {i, l}] + k < n, b[n - 1, Map[#+1&, l]], 0]][Length[l]]]; a[n_] := b[n(n+1), Table[0, {n}]]; a /@ Range[0, 9] (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)
Formula
a(n) = A340591(n,n).